-параметрические стабилизаторы напряжения;
Параметрические стабилизаторы - это устройства, в которых стабилизация осуществляется за счет использования свойств нелинейных элементов: насыщенных дросселей, нелинейных конденсаторов, карборундовых резисторов и др. В практической области наибольшее распространение получили феррорезонансные стабилизаторы, использующие нелинейные свойства насыщенного дросселя.
- компенсационные стабилизаторы напряжения.
Компенсационные стабилизаторы - это устройства, в которых стабилизация осуществляется за счет воздействия изменения выходного напряжения на регулирующий орган через цепь обратной связи. Представляют собой замкнутые системы автоматического регулирования (из-за чего их иногда называют регуляторами напряжения), где ток через регулирующий орган проходит непрерывно или импульсно. Для широкого применения наибольшее распространение получили электромеханические (сервоприводные, электродинамические) стабилизаторы напряжения и ступенчатые корректоры напряжения (дискретные, ключевые стабилизаторы).
ПАРАМЕТРИЧЕСКИЕ.
1. Феррорезонансные стабилизаторы напряжения
Феррорезонансные стабилизаторы напряжения построены на основе использования эффекта феррорезонанса напряжения в контуре трансформатор - конденсатор, обеспечивающего непрерывное регулирование выходного напряжения в определенных пределах изменения нагрузки. В настоящее время находят ограниченное применение из-за ряда недостатков.
Достоинства:
- высокое быстродействие;
- большой ресурс работы.
Недостатки:
- высокий уровень шумов при работе стабилизатора;
- искажение формы входного напряжения;
- недопустимость работы в режимах холостого хода и при перегрузках;
- зависимость выходного напряжения от частоты питающей сети;
- низкое значение КПД.
КОМПЕНСАЦИОННЫЕ
1.Ступенчатые стабилизаторы напряжения
Стабилизаторы напряжения со ступенчатом регулированием представляют наиболее широкий класс устройств, обеспечивающих поддержание выходного напряжения с определенной точностью. Принцип стабилизации основан на автоматической коммутации (переключении) секций (обмоток) автотрансформатора (или трансформатора) с помощью силовых ключей (реле, тиристоров, симисторов). В силу ряда достоинств ступенчатые корректоры напряжения нашли наибольшее распространение на рынке стабилизаторов.
Достоинства:
- быстродействие;
- широкий диапазон входного напряжения;
- возможность работы при холостом ходе;
- отсутствие искажения синусоидальности формы выходного напряжения;
- высокое значение КПД.
Недостатки:
- ступенчатое изменение выходного напряжения, ограничивающее точность стабилизации.
2. Электромеханические стабилизаторы напряжения
Электромеханические стабилизаторы напряжения представляют собой следящую систему с использованием электродвигателя, автотрансформатора и системы управления двигателем. Такие стабилизаторы позволяют непрерывно и плавно регулировать выходное напряжение без искажения синусоидальной формы.
Достоинства:
- высокая точность регулирования;
- отсутствие помех;
- высокая перегрузочная способность;
- широкий диапазон регулирования.
Недостатки:
- низкое быстродействие;
- ограниченный ресурс службы при наличие требования по проведению периодических регламентных работ;
- наличие открытого скользящего электрического контакта, ограничивающее среду использования.
4. Стабилизаторы напряжения с подмагничиванием трансформатора
Стабилизаторы напряжения с подмагничиванием трансформатора основаны на компенсации изменения напряжения сети путем регулирования коэффициента трансформации за счет локального подмагничивания стержней автотрансформаторов со специально выполненным магнитопроводом и системой обмоток. Подмагничивание осуществляется с помощью тиристорного регулятора. Такие стабилизаторы характеризуются высокими перегрузочными способностями, но имеют ограниченный диапазон регулирования и повышенный коэффициент искажения синусоидальной формы выходного напряжения по сравнению со ступенчатыми корректорами напряжения.
5. Стабилизаторы напряжения с двойным преобразованием энергии
Стабилизаторы напряжения с двойным преобразованием энергии содержат выпрямитель и транзисторный инвертор с ШИМ управлением, обеспечивающий стабильное синусоидальное напряжение с частотой 50 Гц. В настоящее время находятся в стадии промышленного освоения.
6. Высокочастотные стабилизаторы напряжения.
В последние годы предпринимаются интенсивные попытки создания высокочастотных стабилизаторов (далее, ВЧ-стабилизаторы) на базе современных силовых транзисторов. Примером для разработчиков является успешное использование высокочастотных приводов для управления асинхронными электродвигателями, построенные на сходной элементной базе. Попыткам создания ВЧ-стабилизаторов способствует также общая тенденция удешевления электронных комплектующих и рост цен на сырье, используемое в производстве низкочастотных стабилизаторов (медь, электротехническое железо и т.п.). Кроме того, ВЧ-стабилизаторам по определению присущ целый ряд важных преимуществ: они легче обычных, у них более высокая скорость стабилизации, выше точность стабилизации выходного напряжения.
Однако вплоть до последнего времени стабилизаторы не получили широкого распространения. Этому есть одна основная причина: практически все попытки построения ВЧ-стабилизаторов используют схему со звеном постоянного тока. Как следствие, такие приборы имеют КПД намного ниже традиционных приборов (т.к. используется двойное преобразование энергии). Кроме того, нагрузка при подключении к ВЧ-стабилизатору со звеном постоянного тока гальванически развязана от питания, что делает невозможным сброс реактивной энергии в сеть. Наконец, самый большой недостаток таких стабилизаторов - это их очень высокая цена: они почти на порядок дороже, чем обычные низкочастотные компенсаторы.